This tutorial is focused around converting the datestamps from the Yahoo finance API to times that Matplotlib understands. To do this, we're going to write a new function, bytespdate2num.
def bytespdate2num(fmt, encoding='utf-8'): strconverter = mdates.strpdate2num(fmt) def bytesconverter(b): s = b.decode(encoding) return strconverter(s) return bytesconverter
This function takes the data, decodes the data based on the encoding, then it returns that.
Applying this to the rest of our program:
import matplotlib.pyplot as plt import numpy as np import urllib import matplotlib.dates as mdates def bytespdate2num(fmt, encoding='utf-8'): strconverter = mdates.strpdate2num(fmt) def bytesconverter(b): s = b.decode(encoding) return strconverter(s) return bytesconverter def graph_data(stock): # Unfortunately, Yahoo's API is no longer available # feel free to adapt the code to another source, or use this drop-in replacement. stock_price_url = 'https://news.r6siege.cn/yahoo_finance_replacement' source_code = urllib.request.urlopen(stock_price_url).read().decode() stock_data = [] split_source = source_code.split('\n') for line in split_source[1:]: split_line = line.split(',') if len(split_line) == 7: if 'values' not in line and 'labels' not in line: stock_data.append(line) date, closep, highp, lowp, openp, adj_closep, volume = np.loadtxt(stock_data, delimiter=',', unpack=True, # %Y = full year. 2015 # %y = partial year 15 # %m = number month # %d = number day # %H = hours # %M = minutes # %S = seconds # 12-06-2014 # %m-%d-%Y converters={0: bytespdate2num('%Y-%m-%d')}) plt.plot_date(date, closep,'-', label='Price') plt.xlabel('Date') plt.ylabel('Price') plt.title('Interesting Graph\nCheck it out') plt.legend() plt.show() graph_data('TSLA')
The resulting graph should look something like this, if you're plotting TSLA: