Converting date stamps for Matplotlib



This tutorial is focused around converting the datestamps from the Yahoo finance API to times that Matplotlib understands. To do this, we're going to write a new function, bytespdate2num.

def bytespdate2num(fmt, encoding='utf-8'):
    strconverter = mdates.strpdate2num(fmt)
    def bytesconverter(b):
        s = b.decode(encoding)
        return strconverter(s)
    return bytesconverter

This function takes the data, decodes the data based on the encoding, then it returns that.

Applying this to the rest of our program:

import matplotlib.pyplot as plt
import numpy as np
import urllib
import matplotlib.dates as mdates

def bytespdate2num(fmt, encoding='utf-8'):
    strconverter = mdates.strpdate2num(fmt)
    def bytesconverter(b):
        s = b.decode(encoding)
        return strconverter(s)
    return bytesconverter
    

def graph_data(stock):
    # Unfortunately, Yahoo's API is no longer available
    # feel free to adapt the code to another source, or use this drop-in replacement.
    stock_price_url = 'https://news.r6siege.cn/yahoo_finance_replacement'
    source_code = urllib.request.urlopen(stock_price_url).read().decode()
    stock_data = []
    split_source = source_code.split('\n')
    for line in split_source[1:]:
        split_line = line.split(',')
        if len(split_line) == 7:
            if 'values' not in line and 'labels' not in line:
                stock_data.append(line)

    date, closep, highp, lowp, openp, adj_closep, volume = np.loadtxt(stock_data,
                                                          delimiter=',',
                                                          unpack=True,
                                                          # %Y = full year. 2015
                                                          # %y = partial year 15
                                                          # %m = number month
                                                          # %d = number day
                                                          # %H = hours
                                                          # %M = minutes
                                                          # %S = seconds
                                                          # 12-06-2014
                                                          # %m-%d-%Y
                                                          converters={0: bytespdate2num('%Y-%m-%d')})

    plt.plot_date(date, closep,'-', label='Price')
 
    plt.xlabel('Date')
    plt.ylabel('Price')
    plt.title('Interesting Graph\nCheck it out')
    plt.legend()
    plt.show()


graph_data('TSLA')

The resulting graph should look something like this, if you're plotting TSLA:


There exists 1 quiz/question(s) for this tutorial. for access to these, video downloads, and no ads.

The next tutorial:





  • Introduction to Matplotlib and basic line
  • Legends, Titles, and Labels with Matplotlib
  • Bar Charts and Histograms with Matplotlib
  • Scatter Plots with Matplotlib
  • Stack Plots with Matplotlib
  • Pie Charts with Matplotlib
  • Loading Data from Files for Matplotlib
  • Data from the Internet for Matplotlib
  • Converting date stamps for Matplotlib
  • Basic customization with Matplotlib
  • Unix Time with Matplotlib
  • Colors and Fills with Matplotlib
  • Spines and Horizontal Lines with Matplotlib
  • Candlestick OHLC graphs with Matplotlib
  • Styles with Matplotlib
  • Live Graphs with Matplotlib
  • Annotations and Text with Matplotlib
  • Annotating Last Price Stock Chart with Matplotlib
  • Subplots with Matplotlib
  • Implementing Subplots to our Chart with Matplotlib
  • More indicator data with Matplotlib
  • Custom fills, pruning, and cleaning with Matplotlib
  • Share X Axis, sharex, with Matplotlib
  • Multi Y Axis with twinx Matplotlib
  • Custom Legends with Matplotlib
  • Basemap Geographic Plotting with Matplotlib
  • Basemap Customization with Matplotlib
  • Plotting Coordinates in Basemap with Matplotlib
  • 3D graphs with Matplotlib
  • 3D Scatter Plot with Matplotlib
  • 3D Bar Chart with Matplotlib
  • Conclusion with Matplotlib